Learn from cities, and optimize them.

-An overview of data extraction methods in urban environments

Jason Bao

The Problem

- Booming population of cities
 - In 2020, 56.2% of world population was urban
- Importance of cities
 - Economic Prosperities
 - Social Movements
- Backlash of rapid urbanization
 - Traffic congestion
 - Air pollution
 - Overcrowdedness
 - Unable to solve it efficiently due to limits of data.
- Data are useful because of Data Science.
- Utilization of data science methodologies to extract valuable urban data, to serve as reference for policy makers to improve city environment.

The Methods: Machine Learning

- Introduction
 - Automatically-improved algorithms through experience and by the use of data
- Mechanism
 - Weighted vote of various models
- Case Study: Conterminous United States
 - Objective: large-scale urban extent mapping at an intermediate resolution (500 m)
- Outcome & efficiency
 - Accuracy: >95% from past data

The Methods: Agent-Based Modeling

- Introduction
 - Models for simulating the interactions of autonomous agents
- Mechanism
 - Observe the effects at a higher level
- Case Study, Hamburg City
 - Potential human exposures to environmental stresses (pollutants)
- Outcome & efficiency
 - Offer advice on citizen behaviors after simulations

Figure 1. Illustration of the agent-based model framework for environmental exposure simulation (adapted and reedited from Leyk et al. [45]).

The Gap & Future

- Gap of current methodologies
 - Verification & Applicability?
- Presentation of a board research plan
 - Integration of the two data science methodologies
 - Predict & Observe the effects after the implementation of a hypothetical policy
 - More informed city planners, better policy & infrastructure for citizens
- A testable version of city.

